If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2=40/2
We move all terms to the left:
2w^2-(40/2)=0
We add all the numbers together, and all the variables
2w^2-20=0
a = 2; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·2·(-20)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*2}=\frac{0-4\sqrt{10}}{4} =-\frac{4\sqrt{10}}{4} =-\sqrt{10} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*2}=\frac{0+4\sqrt{10}}{4} =\frac{4\sqrt{10}}{4} =\sqrt{10} $
| 2w-5+3(2w+2)=-2(w+7) | | -18=-1+x | | 10+3(5-a)/2=4 | | 7.9+-4s=19.9 | | -55=n-26 | | Y=3x+2(x=8) | | 18=9/5c | | 3-n=19 | | Y=3x+3(x=8) | | 2⋅(2x-1)-6⋅(1-2x)=2⋅(4x-5) | | Y=544x² | | Y=0.2x(x=10) | | 5t^2-6t+17=0 | | (x-2)^2+13=40 | | 4(6-2m)=-2 | | 32=8-5/3x | | 21+9x=15x+33* | | -5(-5x+4)-8x=2(x-9)-5 | | 4v-36=-4(5v-3) | | 2x+1x2x+26=7 | | z/5-5=31.4 | | Y=1.8x1+32 | | 4(Y-3)+19=8(y+3)+7 | | 21+x=7x-3 | | 3/2x-4=-16 | | 0.5(10x+10)=4x+5 | | 0.5(10x+10)=4x=5 | | (x-3)^2=48 | | |5-x|=12 | | -11x+11x=5x | | -4(2x-1)+3x=-9+5(x-2)-7 | | 3=+6+a |